
www.manaraa.com

WeSCoS: A First Step Towards Web Programming

Laurence Melloul Trevor Pering Armando Fox
Computer Science Department Intel Microprocessor Research Labs Computer Science Department

Stanford University 5350 N.E. Elam Young Parkway Stanford University

Stanford, CA 94305 Hillsboro, OR 97214-6497 Stanford, CA 94305

melloul@cs.stanford.edu trevor.pering@intel.com fox@cs.stanford.edu

Abstract

The characteristics of the Web and its services, such as typeless data, service accessibility, and service
autonomy, provide an appealing environment for composing services, although these same properties
raise new challenges. We have prototyped WeSCoS, a Web Service Composition System, that is itself
accessed as a Web service and provides a framework for composition. It is an early testbed to
experiment with Web composition and identify distributed system issues that will need to be addressed
in order to enable a style of large-scale Web programming, in which developers will use Web services
as simple components to be loosely integrated into robust, large-scale applications. The main design
component of WeSCoS is a per-service specification document, which encapsulates all necessary
information for the WeSCoS system to automatically execute service requests, both atomic and
composite.

1 Introduction
WeSCoS (Web Service Composition System) strives to leverage the vast array of existing Web
services by enabling service reuse in a manner similar to that of component-based software
development. WeSCoS encourages software developers to treat Web services as simple software
components used to build larger, distributed Web applications, rather than as monolithic entities only.
In WeSCos, composable entities, consisting of both atomic services and compositions, are described in
a self-contained service specification. When executed, composition specifications ultimately trigger
basic Web service interactions, which are then combined to produce the aggregate result.

A simple example of a composed service supported by the current system is “find restaurants near
theaters in a given zip code,” which involves 1) finding theaters in a given zip code, 2) converting
each theater’s address to latitude and longitude, 3) locating restaurants near that location, and 4)
combining all the results. Other example compositions include sorting hotels by the number of nearby
restaurants, obtaining restaurant reviews from multiple sources, ordering groceries based on a list of
recipes, and the canonical comparison shopping. Although all of these examples can be implemented
without WeSCoS using ad-hoc scripting techniques, a supporting framework will facilitate their
development, enabling the creation of more complex services with lower overhead.

The next section presents the motivation behind using Web services as distributed building blocks,
discussing their advantages and disadvantages in detail. Section 3 covers the implementation of the
WeSCoS service specification and execution environment. Related work, covered in Section 4,
focuses mainly on service composition in traditional object-oriented environments and also covers
related technologies in the Web domain. Section 5 discusses future work: how the composition
framework can be extended to aid the construction of large-scale distributed systems by automatically
supporting basic distributed system mechanisms.



www.manaraa.com

2

2 Motivation
Just as reusable software allows new systems to be rapidly created by composing independent
modules, so the large selection of services on the Web makes it appealing to use them as building
blocks in the creation of larger and more sophisticated services. Composition enables the creation of
large systems because it supports reuse: previous work, performed by independent, specialized
organizations, can be incorporated into new systems, decreasing the implementation cost.
Additionally, Web services represent vast stores of data that cannot be otherwise centralized, because
the data is proprietary, too large in volume, or too frequently changing to make warehousing practical.
Beyond code reuse, Web service composition allows us to leverage these databases.

A Web compositionframework facilitates the composition of Web services by streamlining the
incorporation of existing services and enabling inter-service composition. Web developers inject their
services into the system, immediately making them available for composition. In case they specify a
composite service, the system creates a new Web service, in turn available for composition, and
becomes responsible for automatically executing every step, from invoking the composed services to
appropriately assembling the results, upon user requests.

We describe the benefits and challenges of Web service composition as compared with traditional
object-oriented software module composition, outline an architecture that exploits the strengths and
addresses some of the challenges of Web service composition, and discuss experience with our early
prototype implementation. Although this is early-stage work, our larger goal is a research agenda
leading to an Internet in which software is routinely built by on-demand composition of autonomous
services. Hence the primary goal of our prototype is to illuminate the challenges for ongoing work
and provide a platform on which we can conduct future experimentation for large-scale Web
programming.

2.1 Web Services Make Good Building Blocks
Web services are good building blocks for large-scale applications because they arepublicly
accessible, homogeneous, use fluid calling conventions, and are autonomous:

1. Accessibility, afforded by the public knowledge of the service interface increases the number of
basic services available for composition. This information, such as the service script’s URL or
HTTP method, is currently encapsulated in the HTML pages associated with the service. In
contrast, in traditional object-oriented composition, composers and service providers must agree
on a location where to make service client stubs available, hence making the injection of new
services in the system dependent on service provider’s will and reactivity.

2. Homogeneity, meaning all - or most of – Web services are accessed through HTTP, makes it easy
to interact with all services uniformly; otherwise, the implementation overhead caused by
composing autonomous services deployed over different, but equally dominant, protocols such as
Java RMI, DCOM and CORBA ORBs (Object Request Brokers), becomes prohibitive.

3. Calling conventions: Web services manipulate typeless information. All data is passed as
strings, with descriptive keyword names (rather than datatype names) used to identify arguments
in invocations (form submissions). This has two important side effects: first, information can be
uniformly transferred between services, without requiring casting or the use of conversion
functions, as would be necessary if using strongly-typed interfaces in object-oriented software
composition [1]; second, because HTML forms use keyword-based argument passing (also found
in scripting languages such as Tcl [2] and Perl [3]), invocations are generally resilient to the
number and order of arguments, avoiding some brittleness when the service evolves. (RPC
marshalling, while more efficient, requires observance of the number of parameters and their
ordering.)



www.manaraa.com

3

4. True autonomy keeps Web services clearly decoupled from one another: initially developed and
maintained independently, services are not altered by type assumptions about their counterparts or
interoperability code changes. In addition to providing excellent fault isolation, true autonomy
makes no single entity responsible for theentire system: each individual service undertakes the
responsibility for development, availability, and robustness of its own functionality. This is an
extremely important consideration to create a new large system because otherwise the
coordination and robustness of a large monolithic project becomes impractical.

2.2 Web Service Composition Presents New Challenges
Although autonomous services provide many desirable characteristics, they also present many
challenges.

1. Lack of apparent structure. Web services today return results that are not easily machine-
readable: their structure is not apparent because the results were generated for human interaction.
Without a mechanism for incorporating new services into the system, a custom wrapper for each
individual service is required, making the cost of incorporating such services prohibitive. In the
future, we expect the move to XML-based Web service representation to alleviate this problem.

2. Lack of guarantee. Because autonomous services are independently developed and maintained, a
service consumer (or composition engine) has very little control over the quality and availability
of the foreign service. For example, if a bug is found in a remote service, a consumer has no way
to encourage speedy repair. In practice, the market economy of Web services, revolving around
the principle of competition, necessitates these services to do the best they can at meeting their
customers needs, so many of the issues are likely to be solved “by popular demand.”

3. Lack of support for automatic composition validation. As we describe later, the lack of typing
of Web data removes the benefit of compile-time automatic error detection (although it has the
advantage of not discarding logically valid compositions) and places the burden of validation on
the developer creating the composition. Manual verification may be acceptable for small-scale
projects, but it is a liability for larger systems.

4. Wide-area distribution. Autonomous Web services are remote, which means that high-
bandwidth or low-latency transactions are not always possible, although current ASP1-style
collocation and peering technology should alleviate this.

5. Independent evolution. The last and most difficult problem with autonomous services is that a
user or composition engine has no control over the evolution of the service interface: a service can
change its interface’s key elements without notice, perhaps causing composition systems to break.

In summary, although new challenges arise that are unique to (and result from) the Web’s HTTP
protocol and loosely-coupled, widely-distributed nature, a Web service composition framework, for
that same reasons, will help solve many of the traditional problems of object-oriented composition
systems. We believe Web services’ true autonomy makes the Web a promising environment for reuse
and large-scale composition.

3 The WeSCoS Architecture and Execution System
The WeSCoS system allows developers to add services into the system and specify composition
requests. It is itself a Web service. It is centered on the concept of aservice specification, a single
document, written in XML (eXtensible Markup Language) [4], that characterizes a remote
autonomous Web service and encapsulates all the information required to invoke against it and collect

1 Application Service Provider



www.manaraa.com

4

and parse the results. The same specification interface is used to specify an atomic service or a
composite service, making these appear identical to the composition engine and its users. Once a
service specification is loaded into WeSCoS, the service is made available for composition on the
Web.

Compositions in the service specification are specified using XPL (XML Programming Language), a
scripting language we have defined to facilitate composition definition and processing.

The WeSCoS execution system, shown in Figure 1, implements the processing of WeSCoS service
specifications to execute user requests. The architecture consists of the Service Processing Core, a
Database to store specifications, and a Web Front-End to enable users to invoke services through a
Web browser. When a request is made, the system fetches the XML specification from the Database
and forwards it through the appropriate stages, annotating it with additional information as it passes
along. The final document is a complete characterization of the request, including the initial
specification, input fields, results, and logging information.

Fig. 1. The WeSCoS System architectureconsists of three main logical components: the Web front-end, the
service processor core, and the database.

The front-end is responsible for two major interactions: submitting a new request, and displaying the
results of a completed request. First, the user selects a request from a simple list of available services;
the front-end then retrieves the specification from the Database and automatically generates a HTML
form based on that specification to get user input. When the user submits a completed form, the front-
end inserts the input values into the XML specification and passes it to the Service Request Processor.
After the system completes the composition, it annotates the document with the service invocation
results, from which the front-end generates HTML output.

The Service Request Processor routes a service request to the appropriate destination based on the
nature of the service specification: to either the HTTP processor or composition engine. The HTTP
processor retrieves the appropriate contact information from the specification, interacts with the
external Web-server, and places the parsed result in the document. The composition engine executes
the composition steps, that is to say the XPL statements specified in the specification, creating output
as it progresses. When it encounters an invocation statement, it forwards the request to the service
request processor which in turn handles the new request adequately.



www.manaraa.com

5

3.1 Design of the WeSCoS Service Specification
The WeSCoS service specification is critical for the WeSCoS system as it includes all necessary
information for the system to automatically process user requests. It permits users to both describe an
HTTP service or specify a composition request. Several key design points are fundamental to the
specification design and the WeSCoS system; they basically made it possible to design a flexible
execution composition framework.

1. A separate specification document

For WeSCoS to be a composition framework, all variant information, which are specific to the
services (service url, input/output parameters, etc.), are left outside the execution system, available and
accessible when services need to be invoked or compositions to be processed to fulfill a user request.
For that reason, the service representation is a separate specification document, which is loaded for use
at run-time only. The service invocation and composition mechanics are in the system, but the details
specific to the service are in the specification. The specification is the only source of information
needed to invoke against a service, and the only place in which changes due to service evolution need
to be reflected.

2. An XML specification

We identify the three following requirements for the service representation:

• Typeless, keyword-identified data

We already identified the Web service features such as typeless data (mainly strings) and
keyword-based argument passing that make Web composition appealing. We would like our
service specification to preserve these properties: it must allow the encoding of Web data as sets of
self-describing, typeless, keyword-identified parameters.

• “Typeless” data structures

For easier information retrieval and processing, we would like Web service interface parameters to
be described usingsomestructure, without however imposing rigid types (really data structure
names). Dissociating the type name from the structure of the element permits compositions of
truly autonomous services, that might create different types for the same data structure, or use a
same type name for different data structures.

• Attach information to leaf elements of data structures

A third requirement of the service specification language is the ability to attach identifying
keywords not only to data structures, but also to individual elements within those data structures.
The motivation is that frequently a Web service will return several result fields from an invocation
(e.g. an address-lookup service might return name, address, state, and zip), and it may be desirable
to use onlysomeof those fields for composition with a second service (e.g. a zip code to ZIP+4
mapper). Such compositions are possible only if we expose the leaves of the data structures.

Given these requirements, we selected XML as the medium for service specification. As the emerging
representation of choice for semi-structured data, XML allows the definition of the input/output data
structures of the service without imposing rigid types, still providing enough structure for automatic
data processing. Furthermore, because XML expressions are nodes in a tree, it is easy to access sub
elements of the input/output parameter’s data structures within the service specification through tree
path expressions. (This is the approach adopted by databases for semi-structured data, such as Lore
[5].) Unlike class definitions in object-oriented languages, no access methods are needed and there is
no issue with private or protected access to data members: in the XML service specification, all
elements that are exposed are essentially public.



www.manaraa.com

6

3. A new scripting language to specify compositions

XPL is the XML Programming Language we defined for specifying composition instructions in the
service specification. XPL, which we describe in section 3.4, is an interpreted language with very
limited capabilities such as iteration and set selection; it is adequate for simple compositions. Since
XPL is implemented using the same general syntax, XML, as the overall service specification, and is
simple to use, it does not necessitate learning another syntax or language, perhaps more complex. In
addition, not embedding another scripting language such as Tcl restricts the type of instructions that
are executed by the system, and limits its set of unpredictable behaviors such as infinite loops.
Finally, compositions expressed in XPL are simple enough that the speed of execution and restricted
nature of the language do not hinder the system. (We recognize however that it is hard to impose a
new language, how easy it is to learn; XPL was mainly designed for a research purpose, and nothing
prevents the extension of the specification to incorporate other languages, as long as the execution
system understands how to process them.)

4. A uniform interface for “atomic” and composite services

We would like useful compositions to become new building blocks themselves. To this end,
execution details are isolated in one section of the representation, held separate from the service
identification and interface description information. This allows uniform interaction with all
specifications, regardless of the type of the service (atomic or composite), and makes it easier to
understand the service by clearly separating the service interface from implementation details. It also
limits the impact of a change of service definition: changes in the execution information (such as
service URL) only impact one specification; changes in the description information (such as new input
parameter) might also impact specifications that compose this service.

3.2 A Simple Service Description Example
Figure 2 gives an example of specification for the atomic, “CD search by author” service using
Amazon.com. There are four major components of the document: an identifier, input schema, output
schema, and execution information.

Fig. 2: The Service Specification, version 1.0.The “CD search by author” example using Amazon.com. There
are four major components: the identifier, input-schema, output-schema, and execute nodes.

The <identifier> node contains all the information necessary to describe the function, information
source, and version of the service. Input and output schemas describe the interactions the specification



www.manaraa.com

7

is able to support; they are specified in a loose subset of XML-Schema [6]. Each <element> tag
represents a field in the service’s input/output with the name specified (in the example, “field-
keywords” is the name of the parameter expected by the HTTP method to call the service). Currently,
elements can either be simple, like “field-keywords,” and contain data, or complex, like “result,” and
contain other elements. Additionally, nodes can be tagged as repeating, with “maxOccurs,” or
optional, with “minOccurs.” Schemas are used to describe the expected input and output parameters,
both for the composing system, and the composer through the descriptive “desc” field. They also let
specify some type information, for possible use by strongly-typed service backend infrastructures.

The bulk of the differentiating information for a service is contained in the <execute> node. This node
has a method indication and a version number. The methods currently supported are “http” for the
invocation of an atomic, HTTP service, and “comp” for the execution of a composition request. (At
the expense of more complexity in the composition process, the execute node could be extended with
other methods, such as <execute method=”tcl”> or <execute method=”java”>.)

The <execute> node version number indicates the version of the method (not to be confused with the
HTTP version itself in the case of the “http” execute node), necessary to the processing system, in case
of further evolution of the method.

3.3 An Execution Example: The “http” execute node
The “http” execute node, shown in Figure 3, contains information to invoke an HTTP service and
parse the result document. There is basic contact information, primarily the service URL, and parsing
patterns, which can either be complex in the case of HTML-returned documents, or trivial if the result
document is returned in machine-readable XML (in that case, the output-schema node provides
sufficient information for result extraction).

<execute method=“http” version=“1.0”>

<url >http://www.amazon.com/exec/obidos
/search-handle-form/102-0977834-
7085735</url>

<method >post</method>

<version >1.0</version>

<parse method=“html ”>

<result>

<![CDATA[<tr…<td…<a…>title</a>…~au
thor<…Our Price:…$price<…</tr>]]>

</result>

</parse>

</execute>

<execute method=“http” version=“1.0”>

<url>http://www.amazon.com/exec/obid
os/search-handle-form/102-0977834-
7085735</url>

<method>post</method>

<version>1.0</version>

<parse method=“xml ”/>

</execute>

Fig. 3: The “http” execute node, for services returning respectively HTML and XML results. It contains all
necessary information for the HTTP method call and result parsing. Parsing can either be accomplished using
HTML, which requires pattern-matching information, or XML.

3.4 The “comp” execute node and the XPL language
The “comp” execute node (Figure 4) specifies what services to invoke and how to merge results, using
XPL (XML Programming Language). The primary use of XPL is to invoke services (<invoke>
instruction), iterate over results (<foreach>), and create output information in a document (<add>).
XPL is built on top of XPath [7], which selects components of an XML document using tree
expressions. The <invoke> and <foreach> operations bind variables which can be used as the root of



www.manaraa.com

8

an XPath expression. For example, <foreach bind=”res” data=”A/result”> iterates over all theresult
elements ofA, binding each one to the variableres; “res/title” then access the appropriate title element
of A.

The <invoke> operation is the most important in WeSCoS because it provides the basic mechanism
for composition: it is responsible for invoking another service representation, selected by the encased
<identification> node, and for mapping parameters as appropriate. When nested inside of a loop,
<invoke> can be used to iterate calls to other services with variations in the input parameters.
Additionally, <invoke> can be used to transparently call other composite services.

<add> creates a hierarchically structured output element in the service document, eventually displayed
in HTML by the Front-End or used by another composition request.

Fig. 4: The “comp” execute nodeprovides instructions on how to actually compose services. This example
contacts Amazon.com and in turn invokes Buy.com on each result received. Results from Buy.com trigger the
insertion of a result node that combines data from both sources.

As an example of nested compositions (not shown in this paper for space limitations), we specified a
service that, given a zip code, gets the list of theaters with playing movies and show times, along with
the list of nearby restaurants. For that purpose, we first created a service that gets the list of
restaurants near an address, which composes the geocode.com service that provides latitude and
longitude information of a given address, and the mapquest service that provides restaurant
information around specific latitude/longitude coordinates. Next we composed the moviefone.com
service, which provides the list of theaters and their addresses, with that newly created service, calling
it on each theater address. For one user invocation, this service automatically executes more than 10
invocations, for an average of five theaters found.

3.5 Initial Evaluation
WeSCoS is an initial step in identifying a fruitful research agenda in service composition. As an
initial prototype, its implementation is sparse and necessarily limited. However, the prototype has
yielded some immediate insights into the construction of a composition framework. In particular, our
initial experience confirms some of our hypotheses about the desirability of using the Web as a



www.manaraa.com

9

composition substrate, and suggests some alterations that should be made to prevent unnecessary
difficulty later on.

♦ Ease of creation: It is relatively easy to add a new service composition into the system, which
was part of the initial design goal. This is because the entire specification is contained in one file,
and XPL is simple enough to use to specify compositions.

♦ Input/output validation: One difficult step for a user to create a new composition specification is
matching input or output data of the services referenced in the <execute> node with its associated
schema in the composed service specifications. Useful tools to help with this would be a
validating XML parser to check the results or input, or a validating GUI that would also guide
users selecting services.

♦ Loose type mismatches:Even though two interfaces may specify services between which passing
a particular parameter issemantically meaningful,this does not necessarily mean that the
parameter’s format will besyntactically compatible. For example, some services specify results in
all capitals or do not include punctuation, which makes strict comparisons with other results
problematic. It is cumbersome to perform the necessary translations using a procedural language
such as XPL or within the execution system; the use of regular expressions would make this
easier.

♦ Parsing HTML: By far the most difficult aspect of creating a new basic HTTP service is parsing
the return HTML document, for three reasons: first, production HTML is complex and varies in its
compliance with the HTML specification, making it difficult to create an accurate and robust
parsing expression; second, service providers frequently change the output format of the
“decoration” parts of their pages; third, client side scripts such as JavaScripts or ActiveX scatter
non-exploitable information all over the document. Parsing HTML is not a core part of the
WeSCoS service: it is merely a temporary means to provide services for composition, for which
we can leverage useful tools such as WebL [8] and Perl. Although we will likely investigate how
to detect relevant changes within HTML documents, we anticipate that increased adoption of
XML by Web service providers will make this problem less relevant over time.

♦ UI Generation: The current automatic user-interface generation mechanism is adequate for
interacting with simple services, but the display becomes quite complex for results with multi-
level detail. This behavior is sufficient for a research platform, but suggests research into
developing better user-interface generation for ad-hoc services.

♦ Performance: The prototype is quite slow (minutes) in performing compositions, for two reasons:
first, each HTTP transaction requires a round-trip to a remote server, and our prototype operated
behind a firewall with limited capacity; second, the prototype code is naïve—it does not exploit
parallelism inherent in a composition, and the HTML parsing implementation is quite slow. In a
modern peering infrastructure, we expect composition time to be dominated by server latency at
each destination Web server.

4 Related Work
There are several techniques possible for connecting two autonomous services, most notably using a
global type system similar to strong types found in many programming languages, or using flexible
types, which set noa priori restrictions on how the data should be used [1], and put the onus for
validation on the developer. A global type system aids composition by requiring interfaces to type-
match, preventing incorrect compositions. However, such a type system requires a standardization



www.manaraa.com

10

process by which all composable entities agree on the type hierarchy, which is acceptable for well-
behaved or centralized domains but can be problematic in distributed domains when types are added or
changed. The problem is clearly exacerbated on the Web because of the independent evolution and
development of Web services. Ousterhout [1] argues for the use of a loose type system, late type
checking, and keyword-based passing of string arguments (as opposed to marshaling and
unmarshaling with a strong type system) as techniques forintegration-based programming. Roughly,
integration-based programming consists of using a scripting (integration) language to glue together
autonomous components into useful larger systems; the lack of strong types in integration-based
languages means that the type system places noa priori restrictions on which inter-entity calls are
allowed, making the system more robust in the face of type evolution. Web composition clearly has
much in common with this vision, and we adopt Ousterhout’s recommendation in our service
specification. Recent work on flexible type systems [9] proposes specific techniques by which the
type system can be used to validate certain compositions while still allowing composed services to
evolve independently; we are investigating the extent to which those ideas can be integrated into
WeSCoS. It is likely, therefore, that a hybrid approach, which incorporates the right aspects of both
systems, is necessary to handle the composition of Web services. The WeSCoS service specification,
by providing for type specification, should offer enough flexibility for such a hybrid system.

Composition systems such as CHAIMS [10] provide a framework to compose autonomous services,
deployed mainly in object-oriented infrastructures but extensible to the Web. CHAIMS services must
provide wrappers that comply to CPAM (CHAIMS Protocol for Autonomous Megamodules), a
particular invocation protocol whose primitives include service cost estimation and service progress
checking. Imposing this requirement results in a compilation step for CHAIMS systems, but these
functions are compelling and useful when composing autonomous services. We believe that
eventually, a composition framework should benefit from these. HADAS [11] and Ninja [12] include
a “conversion” wrapper, collocated at the composition engine (client), to make all services accessible
over Java RMI. In these systems, a change in the definition of a service is reflected in code rather
than in a declarative specification, and strong typing makes compositions brittle because any change in
the type system causes potentially valid compositions to be rejected.

On the Web, service aggregators such as CNET.com or Yodlee.com compose services, but they do not
expose the composition framework to end users, and it is unclear whether their compositions are ad-
hoc or based on a systematic framework. They do not appear to have the goal, as WeSCoS does, of
allowing large-scale systems programming on the Web.

Various XML tools or specifications, a couple of which described below, help for Web service
invocation. They also intend to facilitate communications between services, by providing naming
standards (Rosettanet.org) for easier transfer of information between services. SOAP [13] (Simple
Object Access Protocol) and SCL (Service Contract Language) are two emerging XML standards that
provide access to Web-based services. SOAP is a mechanism to invoke a remote method through
XML, making it possible to define the scope of a method within a larger functional module. In the
WeSCoS system, a service specification can describe a SOAP method, and it would be relatively easy
to add a <execute method=”SOAP”> node in the XML specification to have the system invoke SOAP
services when they become available. SCL is potentially very similar in function to the WeSCoS
service specification: it is an XML interface for SOAP services. At the time of this writing the SCL
draft is incomplete, so it is too soon to tell how much overlap the two systems will have; however, the
current SCL draft does not suggest it is targeting self-contained composition of services.

5 Future work

WeSCoS currently supports simple services only. We plan to extend the set of services to more
complex ones, such as services that require multiple sessions (e.g., through multiple forms to fill in),



www.manaraa.com

11

services that have side-effects (e.g., through executed payments), or services that present security
enhancements (such as login and password). Multi-session services can be treated through simple
composition specifications; side-effect services are more delicate to handle within composition, as
they may require some degree of transactional semantics. Dealing with error recovery and rollback in
these cases will obviously present a challenge.

We will complement the WeSCoS front-end to allow Web users to add new service specifications.
Besides being able to validate specifications, we will have to address the issues of service
classification and selection to make the service repository scalable. The service repository could itself
be a separate Web service, possibly replicated. A service specification discovery mechanism would be
necessary. We are still investigating the best interface to inject and maintain services in the system.
We believe a community approach will benefit both users and the WeSCoS system, by distributing the
responsibility of defining and maintaining specifications.

Because composition reduces the number of user actions to invoke a complex task, it will be
particularly useful for small-glass device interaction. Past work on small-device Internet access [14]
suggests that it should be straightforward to develop XML-based interface converters to provide
access to the composition system through small-glass devices.

It will also be nice to offer a GUI and abstract the necessary steps to define a service or composition
request; that way, non-technical Web users could also directly benefit from Web composition.

When composing autonomous services, issues such as error recovery, invocation synchronization, and
security will need to be tackled in newly interesting ways:

♦ Error model and error recovery: How do we identify an error whose source is in a process we
do not control, and how do we recover from it?

♦ Invocation synchronization: How do we handle unpredictable timeouts due to nested
composition? This is very likely to happen if multiple WeSCoS system instances simultaneously
serve different sets of composition requests, which automatically become available for
composition by the other WeSCoS instances, and so on. When a service is invoked, it might not
be known from the WeSCoS caller system at what depth in the composition the error originally
occurred, and how the system should react to invocation latencies. (This problem is related to the
problem of graceful exception handling in component-based OOP.) Also, how can we detect and
recover from cycles in the composition graph or mutual recursion?

♦ Security: Because of the lack of control over the services, it is critical that the composed services
must be trusted, or that the composition system has a way to verify the adequacy of the results
returned by one service, before transferring them to the next service in the composition.

The above observations form at least some elements of a rich research agenda for Web composition,
and offering users with opportunities to build large-scale applications through integration-based Web
programming.

6 Conclusion
The WeSCoS framework enables web programming by providing a mechanism for composing
autonomous web services. The salient properties of web services make them an ideal candidate for
composition, presenting a wealth of distributed resources to encourage service development without
prohibitive startup costs. An XML based service specification encapsulates all the information
necessary to reuse a web service, supported by a run-time environment which handles front-end user-
interface management and processing of the specification document. Initial experience with WeSCoS
on small compositions indicate that it is an environment conducive to creating composite services,



www.manaraa.com

12

proving to be a viable platform for investigating complex properties of large-scale distributed web
applications.

Although there is obviously much to be done, and the issues we have uncovered with our early
prototype are barely sufficient to allow us to formulate a research agenda, we believe the potential
impact of this approach is sufficiently wide that the challenges are worth addressing seriously. The
decentralized nature of the Web, the simplicity and lack of structure in its protocols and formats, and
the autonomy of evolution of Web servers and clients are simultaneously the characteristics that make
Web-based composition both frustrating and tremendously promising compared to traditional object-
oriented programming. We hope to enable rapid progress toward a Web in which most services are
composed by default and in which large-scale sophisticated applications created by composition
become as commonplace as HTML form-filling is today.

7 Acknowledgments
The research described in this paper has benefited from the support from Intel Corporation, and
comments from several people, whom we would like to thank: Eric Anderson, Steve Bennett, George
Candea, Mike Chen, Steve Gribble, Paul Pierce, Scott Robinson, and Nick Wade.

8 References
[1] J. Ousterhout.Scripting: Higher Level Programming for the 21st Century. IEEE Computer

Magazine, March 1998.

[2] J. Ousterhout,Tcl and the Tk Toolkit,Addison-Wesley, ISBN 0-201-63337-X, 1994.

[3] L. Wall, T. Christiansen, and R. Schwartz.Programming Perl.Second Edition, O’Reilley and
Associates, ISBN 1-56592-149-6, 1996.

[4] http://www.w3.org

[5] D. Quass, J. Widom. R. Goldman, K. Haas, Q. Luo, J. McHugh, S. Nestorov, A. Rajaraman, H.
Rivero, S. Abiteboul, J.D. Ullman, and J.L. Wiener. LORE: A Lightweight Object REpository
for Semistructured Data.Proceedings of the ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, June 1996. Demonstration description.

[6] http://www.w3.org/XML/Schema

[7] http://www.w3.org/TR/xpath

[8] http://www.research.digital.com/SRC/WebL/library.html

[9] A. Begel and M. Spreitzer.Toward more flexible types.In Proc. WET-ICE 99.

[10] L. Melloul, D. Beringer, N. Sample, G. Wiederhold. CPAM, a Protocol for Software
Composition.CAiSE'99, Heidelberg, Germany, June 1999; Springer LNCS volume 1626.

[11] I. Ben-Shaul, A. Cohen, O. Holder and B. Lavva, HADAS: A Network-Centric Framework for
Interoperability Programming, International Journal on Cooperative Information Systems, World
Scientific Publishing Company, Vol. 6, Nos.3&4, 1997, pp. 293-314.

[12] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer.Adapting to network and client variation
using active proxies: Lessons and experience.IEEE Personal Communications (invited
submission), August 1998.

[13] http://ninja.cs.berkeley.edu

[14] http://www.w3.org/TR/SOAP/


